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ABSTRACT

The signal is a stochastic process satisfying the
stochastic differential equation dx = f(x)dt + dz and observa-
tions ¥ = g(x) + & are taken, where £ 1is white noise. The
exact dynamical equation for the mode of the conditional density

of Xy is derived and discussed.



I. INTRODUCTION: The System and Observation Model,

A filtering problem will be studied for the following
system. The signal, Xy satisfies the vector It stochastic

equation

(1) dx = f(x)dt + dz .

The vector valued observations &S h(xs) + ﬁs’ s & t, are avail-

able at time t. For convenience t = Q0 1is the initial time.

+
=

t
yt = foh(xs)ds

are independent Wiener processes; W, and %, may be

bA and w t %

t t

considered to be independent white noises, The symbol d denotes

a differential; e.g., dw The subscript t indicates

= Ve rarVe) .

a functional dependence on time, and will be omitted occasionally.

E(aw)(aw)! = . dt, vhere I

, 1s independent of x, and E(dz)(dz)'

V(x,t)dt.
Equation (1) and all subsequent stochastic equations are

to be interpreted in the sense of It8 [1] (see also Doob [2]%).

%An alternative interpretation of the stochastic differential equa-
tion has been given by Stratonovich [3], and also studied by Wong
and Zakai [4] and Clark [5]. Results derived with on interpreta-
tion can be transformed by known formulas to results obtained with
the other interpretation; see Clark [5]) for a discussion specific
to the filtering problem.



Notation and the Problem., The conditional density of Xy given

Vg S =%, is written simply as P(a,t). For simplicity the de-

pendence of P(a,t) on Yg» S = t, is suppressed in the notation.

The mode of P(a,t), written a,, is a stochastic process (sup-

-t,
posing that there is a mode), and the object of this paper is the

derivation of a dynamical equation satisfied by a As in the

£

well known linear-gaussian case, the equation contains the obser-
vation as a driving term.

The result of the paper is new and is, in a sense, an
extension of earlier work (Kushner [6],[7]) where dynamical equa-
tions for the conditional density P(a,t) and for conditional
expectations of functions Eth(a) = [ h(a)P(a,t)da are derived.
The derivation here depends upon the result in [6]. The result
in [6], derived formally, pertains to P(a,t); paper [7] provides
a rigorous justification of the egquations for the conditional
expectations Eth(a). (See also Stratonovich [8].) The simplest
of all of the dynamical equations for filtering is, of course,
the well known result of Kalman and Bucy [9] for the linear-
gaussian case (for which [7] provides a rigorous justification).
The derivation in this paper is formal, although the rules of the
calculus of It0 are followed for manipulating differentials of
functionals of Wiener processes,

Whether it is more useful to know the conditional mode,

rather than the conditional mean, for some filtering problem, is a




controversial matter depending on the specific problem of concern,
and is of no interest here. Despite the controversy, it is useful
to compare different methods of processing observed data, or at
least to have available alternative means for such processing.
Furthermore, the estimate of the conditional mode has the intuitive
appeal attached to a 'maximum likelihood' estimate. The derivation
is for a continuous time problem. Whether or not it has relevance
for the discrete problem remains to be seen. (The result does, of
course, describe the movement of the mode for a continuous system
with discrete observations -- 'between' the observations.) In any
case, other than a straightforward application of Bayes' rule, at
present there is no really satisfactory dynamical system representa-
tion for a filter for a really non-linear and discrete problem.

As will appear, for the non-linear problem, a system

corresponding to the exact equation cannot be built with finite

components (which is also true for the equation for the conditional
mean). Nevertheless, it is useful to have an explicit exhibition
of' the exact equation, so that approximations derived by any method
can be compared, or for its usefulness in suggesting approximations,
or to know what must be approximated. This is especially true in
view of the great importance and difficulty of the problem of
processing 'non-linear' data. The issue of adequate approximations
is still wide open.

An only slightly diffefent problem, in discrete and con-

tinuous time, was considered in several interesting papers (Bryson



and Frazier [10], Cox [11] and Friedland and Berstein [12]). Let
the system be x . = fn(xn) + &, with cbservation 6 = g(xn)+wn.
Then, the discrete time equivalent to our problem is to find the

sequence X, maximizing the sequence P(xnlel,...,en). The problem

in [10],[11] and [12] is to find the sequence of last values X

maximizing the sequence P(xl,...,xn)lel,...,en), and was 'approx-
imately' resolved via approximations to a two-point boundary
problem.

An advantage to be claimed by approximating the equations
of the sequel, rather than using approximations derived indirectly,
as in [10],[11],[12], is that the exact meaning of all dropped or
substituted terms is clear; there are no longer multipliers or other
quantities which are not defined in terms of known gquantities, Of
course, the numerical results of the cited works stand by them-
selves, although their relation to the mode is not clear.

It is implicitly supposed that P(a,t) is sufficiently
differentiable with respect to the components of 'a', Then, at
a4, the gradient satisfies Pa(at,t) = 0. Subscripté ay denote
a derivative, subscript 'a' a gradient, the subscript aa denotes
the matrix of second partials, and Pa,aa, denotes [Pai]aa' It
is supposed that Paa(at,t) is not singular, for if it is, either
the mode is not unique, or a finite jump in a, can occur in an

infinitesimal of time, or other analytical problems arise.

Actually, it is not necessary to suppose that P(a,t)




is unimodal. Supposing that a, is the location of a local
maximum of P(a,0), (Pa(aO,O) = 0), the the result, equation (2),

gives the movement of the location of the local maximum a, cor-

responding to initial location a,, as long as a, moves con-

tinuously and Paa(at,t) is non-singular.



ITI. THE MAIN RESULT.

The derivation,a computation using Itd's calculus and
the result of [6], appears in the appendix. The general result
is that the vector process (the conditional mode) ay satisfies
the stochastic differential equation® (2). The functions f, V,
g P and their derivatives are evaluated at (a,,t). The prime
' is transpose, gé is the matrix whose ith column is the
gradient (with respect to a) of 855 the ith component of the

vector g. dyidy'j is to be interpreted as Edwidwj = cijdt (see

th

appendix), the 1i,j element of Z.
b J

_ -1, -1 =1
da = -P . P g% (dy-gdt)-Paa(L P)adt

(2)

2 -1 . -1 “1,.-1. 1.2.-1
+ P Paa[dy z g]aaPaagaZ dy- 5 P Paau

where u 1is a vector with components

-1 -1 -] -1
- 1 t
(3) u; = (dy'Z gaPaa)Paiaa(Paagaz ay)
and
1
L*p = - Z (fiP)a.+ 2 .Z.(vijP)a.a.'
i i i, ] i%3

Recall that 0Q/dt

L*Q 1is Kolmogorov's equation for the density

*
If the reader prefers 'white noise' to differentials of Wiener
processes, he may (at the risk of falling into one of the many traps

laid by the 'white noise' concept) divide (2) and subsequent equa-
tions through by dt.




of the conditional process X, .
Next, write the equations for scalar valued observations.
. . 2
In this case, dy is a scalar differential and (dy) is to be

2
interpreted as o dt = Zdt (see appendix) and

p-l
da = -P » —22 1 (gy-gdt)-P"T(L*P) at
02 a aa, a
(%)
-1 -1
+ PQPaa plgtat PE——-_-—Pa ra
? €aa aaga - 202 ’

where (note that g, 1is a colum vector)

- 'l 1
(gaPaa) a, aa aa a) )

. . sth .
and gaiaj is the 4i,] element of the matrix €
If, in addition, x,  1s a scalar valued process, then

(4) simplifies to the equation, where the abbreviation q = -P/Paa

is used, Pa =0 and V 1is scalar,

q 3V VP
aas a aaa
da = — (dy-gdt) + [f-qf _+ - — - ]
aa
q2g g q2P g2
+—2dt - —2E2at .
o] 2P o
aa

In view of the complexity of (2), the remainder of the

discussion of qualitative properties will concern only the scalar



case (5). If the realizations of the processes P/Paa and P/

P
aaa’ "aa

were available, then the system (5) could be built®, and we would
have a dynamical system whose input is the observation, and whose
output is the conditional mode. If the system were completely

linear and gaussian, then Paaa =0 and P/Paa is the negative

of the conditional convariance of the conditional mean (which then

coincides with a ); i.e., g = -P/Paa satisfies the ricatti equa-

+)
tion.

There are two cases in which (3),(4) and (5) can be
immediately checked. One 1s the completely linear-gaussian case,

the other is the case where f =0 and V = O (no dynamics). In

the latter case, x, =x and the conditional mode satisfies

(6) Fa(yt’t’ at) =0

where (s indicates time dependence)

t -1
1
F(¥yst,%) = P(x,0) exp (fog!S Z, (dyg - 5 gds).
(6) follows by noting that (Siy = ViaViapn 804 DA = t)

*It is, in fact, possible to do this in an approximate sense when

the noises Wy and zy are "wide band'. See Clark [5] and Stra-
tonovich [3]. We cannot pursue this matter here, but the general
idea is to transform (5) by adding some terms, then divide by dt,
suppose that Wy is 'wideband' and use ordinary analog components.
The transformations are discussed in [3] and [5]; the wider the 'band-
width', the better the approximation. See also Wong and Zakai [4].
Also, if the noises wpa-wpaA.A are truly independent for small A,
then (5) may be simulated on a digital computer directly.




n -1
exp - ;— Z(Siy-g(x)A)'ZiA( 5, y-&(x)4) - P(x,0)
P(s,t) = lim =
A—-0

-1
[exp - %—A %(Siy-g(x)A)' ZiA( 6j_Y-g(X)A)‘P(X‘,O)dx

where the denomenator does not depend on x, and the second order
terms in Siy in numerator and denomenator cancel

each other. Also P/P  =F/F_, and P /P =F_ /F

aaa a? since

a

F = (constant) P, Now applying It8's Lemma and the implicit func-

tion theorem to (6) yields the differential of a, in terms of

dt and dy. Since a more general case i1s treated in the appendix,
the details here are left to the reader.
Returning to (5), denote -P/Paa by q. It is possible

to derive differential equations satisfied by g and by Paaa/Paa'

These, in turn, will involve new terms (e.g., Paaa/Paa)’ and so on.

In view of the identification, in the gaussian linear case, of q
with the conditional variance, an equation for g (and its possible
resemblence to the Ricatti equation) would be of interest. First

note that all functions below of the form P/P._, P, P, f, V, etc.

ag’ “asg’

are evaluated at (at,t) at time t. Also for a time function
of the form L(at,t) = F(t), dF is a total stochastic differentials

dL = aF = L(a

t+dt,t+dt)-L(at,t). Then via an application of It8's

Lemma (see appendix)

_dqt = d(P/Paa) = (dP)/Paa'(PdPaa)/Pia
(7
+ Har,)?/P _(aP)(ap )/, ,
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where, by virtue of It8's Lemma, the products of the differentials
are to be replaced by the expectations of the products up to 0(dt)

terms. An evaluation of (7) (see appendix) gives

-1
dg = 3— [L*P + q(L*P)aa]dt

aa
2
g 5 P
- B 05a + o 22222 Nat
20 aa
(8)
g & P a8
3 “a~aaa aaa aa t
+ q@ 2522 dt-q 7p (L*P) dt- ——1 (e-E g)-qg, Jdt
o] aa o]
2
) 8aPaaa 85Faaa (dy-Etgd’c)qJ Faaabs
- 3q g, - —ldt+ 5 {8 —F )
P o 2p (o) aa
aa aa
t o
where E'g = E[g(xt)lys, s = t].
The first term of (8) equals
o] v aaa Vaaaa
5 Vaa_ 5 + q[-faaaq + 2fa+ f 5 + > q -
aa
(9)
aaa aaaa
_BVaa_ 2Va P - T2P 1.
aa aa
Note that (8) reduces to the ricatti equation if the system is
completely linear and gaussian, for then Va = Vaa = Vaaaa = 8.0

€,., =0, and at a=a,P =0 and Paaaa/Paa = -3/q. For
comparison, (10) and (11) are the exact equations for the conditional

mean (mt) and variance (m2t) for the general scalar
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non-linear problem (see [6],[7] for the method of derivation).

(10) dm = E'fdt + 3§(dy-Etgdt)(Et(x-m)g)
g

dm, = [v2 + 2Et(x-m)f-(Et(x-m)g)E/ce]dt
(11)

t
, {dy-E gdt) Et[(x-m)g-mz]g .

a2

The question of useful approximations to (5) and (8) is
still quite open. It seems customary in the derivation of !approx-
imate' or 'linearized' filters to drop all terms with too many
derivatives. The effect of this or any other procedure is not
known, although some numerical investigations and comparisons are
currently being conducted on the system (10), (11). A rather
intéresting and detailed theoretical treatment of linearization

for a class of discrete time problems appears in [13].

Observations. The movement of the conditional mean and covariance

involve functionals of the functions f, V and g, (i.e., Etf

b4

Etgh, ete.). The movement of the conditional mode depends directly

on the properties of f,V and g in the neighborhood of a,, and

.t,
indirectly, via g, on the entire function.

Consider the special case where the instantaneous wvalues

satisfy (at at) Pooa =V =28, =8, =0;i.e., symmetry of P, no
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observations and no system driving noise. Then (5) reduces to

(12) da = (f-qfaa)dt

(13) dq

q[-faaaq + Efa]dt .

The behavior exhibited by (12) is slightly surprising at first.
Suppose f(x) is given by the quadratic of Figure 1, where
f , >0, all a. Then, for f(at) = 0 at time t, the instan-

taneous change in a,_ is in the negative direction, as contrasted

t

to the instantaneous change in m,_, which must be positive (recall

+?
P(x,t) 1is supposed symmetric), In fact, for this example, the
mode tends to x' while the mean tends to + ». This behavior
is explained by the fact that, owing to the dynamics (faa > O),
the 'density of probability' is thinning out faster for x > x',
than for x < x". The approximate solutions of [10],[11],[12]
do not exhibit this behavior (although their problem is slightly
different, it appears that this qualitative feature should be
preserved). Even if there are no observations, the 'odd' terms
contribute to dg, and there does not appear to be any a priori
reason why such terms should be neglected in comparison to other
terms (the usual linearizations do neglect the odd terms). The
complexity of (8) is rather disturbing, but helps to emphasize

that great care may be necessary in choosing an approximation.

In any case, there are only 2 unknown terms in (8),
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a4z = Paaa/ P, and q =P

be written, and will involve higher derivatives. As the order of

aaaa/Paa' Equations for these may also
the derivative increases, the less relevant to the mode it becomes.
Nevertheless, some approximation, preserving the important quali-
tative effects of the higher derivatives on the motion of the
estimate of the mode, must ultimately be made, and is currently
under investigation for a system of the type of (10) and (11).

To understand an approximation, it must be studied in
the context of some particular problem, Hopefully, we will be
more enlighted in the future. The question of approximations

would take up too much space here.



1k

III. APPENDIX. Background: Itd's Lemma and related results.

The discussion is purely heuristic and no conditions

for validity are given. Let W, = (wit}

normed Wiener processes. By the notation

be a set of independent

(A1) u; = F, (U

it 1l

S,...,Uns,s)ds + Z Gij(Uls,...,Uns,

s)dwj,
J

i=1...,n.

is meant that there exists a process [Uit} = Ut which satisfies

-

(where the stochastic integral is understood in the sense of Ito

[11,021)

t

t
Uiy = Ugg * foFi(US,s)ds + £ ? Gij(Us’s)dwj ,

i=1,...,n.

Let Q(U,s) be a doubly differentiable function of U,,...,U,s;

1
then, roughly speaking, It6's Lemma states that

t
(A2) Uy, t) = QU,0) + [ a(U,s) ,
(o]
where
(A%) aq=R,7Rqy + 11 2 (4u.)(au,)
t j BUJ J 2 ,j,k BUJE k J k2
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where by the second order terms (de)(dUk) is meant the expecta-

tion (given the Ui) up to first order terms or

E[Z G, dw, £ G..dw, ] = © G. G, dt .
N ik 'k X Jjk 'k k ik jk

In view of the definition of the product (de)(dUk), the term is

equal to any other with the same expectation, conditioned on {Uit].

Higher order products are said to be zero, in that they need not

be taken into accout in computing the integral (A3). This result

will be basic: It defines a differential so that, with a proper

interpretation of the integral, (A2) holds, and dU has the
intuitive interpretation U = U(t+dt)-U(t). In the sequel, %
denotes time dependence, i a subscript, a; or a,, etc., derivatives;
other notation, e.g., the subscript aa, has been already given
in the text.

Suppose that the Fi and Gij depend on a constant
vector parameter «Q = {ai} and are sufficiently differentiable
with respect to it. Then

(AL) ,Q, s)at + Z G. (Ut,a,s)dwj .

dUiak = Fiak(Ut i 1jak

Now, suppose that o«

+ is a process satisfying

(A5) da; = Aj(Ut,at,t)dt + iBjk(Ut,at,t)dw .
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Then (AL4) is now only a 'partial' differential. Define d'L(at,t) =
d'L as the stochastic differential of L(c,t), where c¢ is a
constant, but evaluated at c = o . Intuitively d'L(at,t) =

L(at,t+dt)-L(at,t).

With the foregoing conventions regarding products of two or more

differentials, the following formal result is seen to hold.

dUi(at,t) = U, (

i at+dt,t+dt) - Ui(at,t) =

"

[Ui(at,t+dt)-Ui(at,t)] + [Ui(a ,t+dt)]

t+dt,t+dt)_Ui(a

t

t
a'u, (a,t) + [% Uiaj(at,t+dt)daj +

2

Uia (a
ik %%

+
ol

t,t+dt)(daj)(dak)].

In the last term on the right, the dt argument contributes a
1 . - t

3'rd order term; also Uiaj(at,t+dt) = Uiaj(at,t)+d{£aj(at,t).

Thus, dropping the (at,t) arguments,

Q.

d,:'_ . . '.
U, =d'U; + % Uy JdaJ + ? (d Ulaj)(daj)

(A6)

+3 T, (da)) ()

ik %%
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or
t
Ui(at,t) = Ui(ao’o) + fod U, .
1 1 il
If the dUi’ d Ui’ d Uia.’Uia. and Uia.ak were given,
J J J

then the daj could be computed. In fact, da, can be no more

than a second order polynomial in the other differentials.

Derivation of (2),

In [6], it is formally shown that the conditional density

P(a,t) satisfies
t -1 t
(A7) dP(a,t) = P(a,t)(dy-E gdt)'Zt(g(a)-E g)+(L*P(a,t))dt

(see text for definitions of Etg and L*P.) The conditional moments
satisfy equations derivable from (A?),‘and these equations are
Jjustified rigorously in [7]. It is supposed that P(a,t) is

sufficiently differentiable with respect to a. It is also supposed

that a, satisfies a stochastic differential equation (i.e., it

has a stochastic differential). If this is not assumed, then the
same result can be obtained by a longer related argument, requiring
the taking of formal limits, and which does not seem to be more
advantageous than the present argument.

The following scalar, vector and matrix equations may

be verified from (A7). The arguments (a,t) are mostly omitted.
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-1
(A8) a'P(a,t) = Pg! T (ay-E'gat) + (L'P) at

+ terms linear in Pa

1 t 1 = t
(49) a'p, (a,t) = (dy-E'gdt)'2 (&-E'g)P,,

-1
+ He'D (ay-E'eat)] ¢ (1'P),,

+ terms linear in Pa

-1
t
t _ 1
(410) P, a.a (a,t) = (dy-E'gdt)'Z [ga.Pa.a * 8 Paa,
i3k J 1k k 17

t M
+g P + g P+ (g-E'g)P 1+(L*P) at
i %58 B3%5% 81%5% 8185%

+ terms linear in Pa'

By definition of a,, P (a,,t) =0 and Pa(at+6ta,t+ﬁo-

-t,

P (a,,t) =0, where B2 = a

A £ap~ B O equivalently, dPa(a,t) = 0.

Since dU., = 4P
i a

0,
i

- ]
0 =d Pa.(at’t) * ; Pa.a.(at’t)daj
1 J iJ
(Al1)

' L
+ ? (a Paiaj(at’t))(daj)+ EJ?kPa.ajak(at’t)(daj)(dak)'

In vector notation, and dropping the arguments,

1
= 4 1
(A12) 0=4d'p + (Paa+ d Paa)(da) +5 8,
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where s 1is a vector with ith component
- ]
s; = (da) Paiaa(da) .

It is clear that, if the differentials actually satisfy (Al2), then

da may be obtained in the following way: From (Al2),

-1 -1 -1
= - ap '
da (T + P aa) Paa(d Pa)
(A1%)

1
8
a

1 ~1 ar -1.-
-5 (I + Paad Paa) P S .
The first term of (Al3) equals -P—l[d'P “a'p. P t.ap 3.

aa a aa ~aa a
Substitute this into (Al3), and then substitute the entire right
side of (Al3) into the da terms of s. Obviously, in this latter
substitution only the first order terms (-P;id'Pa) will matter,
for the others will put products of more than two differentials
into the term s.

Thus, finally, retaining only differentials up to the

second order,

- 'll -1 t ‘lt ;L_ -Lly
(A1) da = -P_-d'P_ + Paa(d Paa)Paad B-3P %,
where
(A15) “s’i = (d'Pa)'P‘lP P_l(d'P ) .

aa aiaa aa a
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The substitution of the appropriate quantities from (A8) to (AlO)
(without the zero P, terms) into (A15) and keeping only terms
whose expectations are no greater than dt, yields the equivalent
of (2).

The evaluations of (7) requires merely dP . and dpP
(with, again, the substitution of second order terms by their
average values up to 0(dt)). As was done in the previous pro-
cedure (here a,g are scalar valued),

dP = P( t+dt) - P(a,t)

Bt +dt?

(A16)

[P(at,t+dt)—P(at,t)]+[P(at+dt,t+dt)-P(at,t+dt)]
2
- 1 c 1
=a'P + P da + Paa(dd) /2 + (d Pa)(da) .
The second term of (Al0) is zero. dp,, is derived similarily,

In the interest of saving space the substitutions will not be

carried out, except for noting that

t P _agsg Pag
dP = Léz;%}géﬁl P(g-E g)+[ L*p+ 22 = &, ea Jat

ag 20 ag

t
_ (ay-E"gdt) t
dPaa - G2 [(g-E g)Paa+ Pgaa+ Paaa a

2 2P 2 p 22

[-L*P + 4 gaaga _ Q aaaga] + aaaaq ga

Paa‘ 02 2P 02 20
aa

*
* {(L P)aa+ Paaa

(ag,)

e

+

t
(5gaPaa+ g P+ (e-E°g)P.___)}dat .

aaa




CONCLUSIONS

The exact dynamical equation satisfied by the conditional

mode has been derived. The equation depends on terms P/Paa’

/P

Paaa etc., which in turn, are given by other stochastic

aa’
equations., The system, for a non-linear problem is not finite
dimensional, but is at least exact, and is the most useful start-

ing point for the study of approximations.
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